Salico

Project Updates

02.05.2025

Agenda

- Schedule
- Prototype 2
 - Design
 - Build
 - Testing (01/11-01/13)

Current Design

- Overview
- Mechanical
- Electrical
- Firmware
- Software

Upcoming Plans

- Last round of testing (02/13-02/17)
- Final Design
- Symposium, final meetings
- After

Other

- Funding
- Thank you

Schedule

We are here

Schedule

Currently modifying our prototype

After our trip, we will only have time for finishing touches and our symposium

Prototype 2

Prototype 2 Design

Building Prototype 2

Casting the 2 ft long rollers...

Assembling the frame

Adding motors and pneumatics

Oahu Trip 2: Test Setup

Oahu Trip 2: Test Setup

Urethane textured rollers

Oahu Trip 2: Test Videos

Some motor stalling

-> increasing current limit fixed this

Rollers not rigid

-> seeing uneven picking

Not picking enough tips

-> could be too many or too large plants being tested. Maybe we can design tusks?

Oahu Trip 2: Test Setup

Tupperware for ebox, batteries, and pneumatics were fine this time, but we need to think of designing a rain shield and enclosure.

Oahu Trip 2: Test Videos

Pistons were uneven (adjusting the valves were not precise)

Rollers were ok but not as effective when wet (better than last time)

We may not be getting enough of the plant (tusks?)

Oahu Trip 2: Pontoon and Cargo Investigation

Pontoons are promising to use for entire mechanism to sit on

Cargo sits pretty high on top of the plants...

Oahu Trip 2: Main Notes

Pinching Force

1 surgical tubing spring per end of the roller was working decently 2 caused the plant medium to be uprooted

Motor

Motor would stall at the point before the medium was uprooted Found good speed for motor

Pistons

Slightly out of sync and hard to tune

Rain

Realized that it can rain and that all electronics, batteries, etc. need to be shielded

Parts broken

Some 3D printed pieces broke during shipping -> they are now CNC

Frame

Extrusions we brought were not long enough, found 7ft long planks to replace

Plant ideal pick height

Measured freshly picked plants compared to ripe plants

Rollers

New textured grip seems to be working better when wet Soft urethane gets dirty very easily Must be reversed on way up, cannot be free spinning

Pontoons

Took measurements, will be useful to have mechanism sit on them

Electrical

Jumper wires were very unreliable Some board components were falling off (capacitor)

Heat

Solenoid bottom super hot Converter warm Motors warm (fixed side is warmer) Rasp pi got hot

Buttons and Screen

Screen keeps blacking out Button will double click sometimes

Logging

Was not logging information when not connected to wifi

Current Design

Current Design - Overview

Mechanical - Rollers & Motors

Mechanical - Rollers & Motors (CNC Parts)

Mechanical - Rollers & Motors (Urethane Rollers)

Mechanical - Pneumatics

Mechanical - Fans

Mechanical - Fans

Mechanical - Fans

Mechanical - Cargo

Mechanical - Cargo

Testing uncovered, but intending to have a cover for shade

Mechanical - Frame

Mechanical - Frame

Mechanical - Battery and Electronic Enclosures

Electrical, Firmware, Software

Electrical

For upcoming trip:

- Hall effect sensing integrated
- Improved harnessing reliability (protoboard shield and soldered connections)
- Low-side driver for fan control

Future Targets:

 Custom Salico controller module (Target: Capstone Symposium)

Firmware

For upcoming trip:

- Validate closed-loop control and torque limiting
- Detailed roller speed control based on the extension of the pistons for better control
- Fan controller (timer)
- Improve robustness of operation

Future targets:

- Integrate more monitors for battery and motors
- Improve user interface (Controller screen layout)

Software

Upcoming Plans

Upcoming trip: what we will be doing

- **Build** full robot
- Accurate test environment
 - Rigid rollers
 - Younger and fewer plants
 - o Full mechanism on the water

• Full path of the plant

o Observe full path of plant from harvest to cargo

Tuning

- Pneumatics
- Motor
- Pinch force
- Height & other dimensions

Media

• Take **lots** of photos and videos

Final design: plans for after our trip and symposium

- **General:** fix anything from testing
- **Usability**: make the harvester easier to use without tech support
 - Make guide for how to use and troubleshoot
- Safety: improve battery situation (battery management system, fuse, etc.)
- Weather Proofing: add sun and rain protection to the cargo, rollers, pneumatics, electronics
- Simplifying: simplify wiring, simplify electrical boards, custom enclosures for pneumatics and electronics
- Finishing Touches: engravings, poster, videos, symposium set up, finish <u>updating our</u>
 website
- **Funding:** keep trying to apply to funding to pay ourselves back
- Last few meetings: Joyce will follow up

Plans for after that

- **Shipping:** Packing up and shipping after the design symposium
- Assembly: Creating instructions and remotely supporting the assembly
- **Support:** Technical support and troubleshooting to get everything running
- Improvements: We will send our full report, CAD, & BOM to Olakai including a list of improvements that can be made
 - Very fast 7 month design sprint
 - We want to provide you with a first version of the design, but we know it is not perfect - the list of recommendations will give a direction for future R&D